Search results for "Population Dynamics and Ecological Pattern Formation"

showing 6 items of 6 documents

Time evolution of non-lethal infectious diseases: a semi-continuous approach.

2005

A model describing the dynamics related to the spreading of non-lethal infectious diseases in a fixed-size population is proposed. The model consists of a non-linear delay-differential equation describing the time evolution of the increment in the number of infectious individuals and depends upon a limited number of parameters. Predictions are in good qualitative agreement with data on influenza.

education.field_of_studyPopulation87.23.Cc Population dynamics and ecological pattern formationPopulations and Evolution (q-bio.PE)Time evolutionCondensed Matter PhysicsQuantitative Biology - Quantitative MethodsElectronic Optical and Magnetic MaterialsFOS: Biological sciencesInterdisciplinary PhysicsQuantitative Biology::Populations and EvolutionStatistical physicseducationQuantitative Biology - Populations and EvolutionQuantitative Methods (q-bio.QM)MathematicsThe European physical journal. B
researchProduct

Dynamics of two competing species in the presence of Lévy noise sources

2010

We consider a Lotka-Volterra system of two competing species subject to multiplicative alpha-stable Lévy noise. The interaction parameter between the species is a random process which obeys a stochastic differential equation with a generalized bistable potential in the presence both of a periodic driving term and an additive alpha-stable Lévy noise. We study the species dynamics, which is characterized by two different regimes, exclusion of one species and coexistence of both. We find quasi-periodic oscillations and stochastic resonance phenomenon in the dynamics of the competing species, analysing the role of the Lévy noise sources.

Competitive BehaviorComplex systemsBistabilityStochastic resonancePopulation DynamicsComplex systemModels BiologicalStochastic differential equationControl theoryQuantitative Biology::Populations and EvolutionAnimalsHumansComputer SimulationStatistical physicsEcosystemMathematicsPopulation dynamics and ecological pattern formationModels StatisticalStochastic processDynamics (mechanics)Multiplicative functionStochastic analysis methods (Fokker-Planck Langevin etc.)Adaptation PhysiologicalRandom walks and Lévy flightQuasiperiodic functionPredatory Behavior
researchProduct

Asymptotic regime in N random interacting species

2005

The asymptotic regime of a complex ecosystem with \emph{N}random interacting species and in the presence of an external multiplicative noise is analyzed. We find the role of the external noise on the long time probability distribution of the i-th density species, the extinction of species and the local field acting on the i-th population. We analyze in detail the transient dynamics of this field and the cavity field, which is the field acting on the $i^{th}$ species when this is absent. We find that the presence or the absence of some population give different asymptotic distributions of these fields.

Fluctuation phenomena random processes noise and Brownian motionPhysicsPhysics - Physics and SocietyFluctuation phenomena random processes noise and Brownian motion; Nonlinear dynamics and nonlinear dynamical systems; Population dynamics and ecological pattern formation; Complex Systemseducation.field_of_studySettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciExtinctionField (physics)PopulationFOS: Physical sciencesComplex SystemsPhysics and Society (physics.soc-ph)External noiseCondensed Matter PhysicsComplex ecosystemMultiplicative noiseElectronic Optical and Magnetic MaterialsProbability distributionQuantitative Biology::Populations and EvolutionStatistical physicsNonlinear dynamics and nonlinear dynamical systemeducationLocal fieldComputer Science::Distributed Parallel and Cluster ComputingPopulation dynamics and ecological pattern formation
researchProduct

MEAN FIELD APPROACH AND ROLE OF THE COLOURED NOISE IN THE DYNAMICS OF THREE INTERACTING SPECIES

2010

We study the effects of the coloured noise on the dynamics of three interacting species, namely two preys and one predator, in a two-dimensional lattice with N sites. The three species are affected by multiplicative time correlated noise, which accounts for the effects of environment on the species evolution. Moreover, the interaction parameter between the two preys is a dichotomous stochastic process, which determines two dynamical regimes corresponding to different biological conditions. Preliminarily, we study the noise effect on the three species dynamics in single site. Then, we use a mean field approach to obtain, in Gaussian approximation, the moment equations for the species densiti…

Fluctuation phenomena random processes noise and Brownian motionProbability theory stochastic processes and statisticSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Population dynamics and ecological pattern formation
researchProduct

Topical issue on Ecological Complex Systems

2008

Properties of Higher OrganismsNoise in Biologcal SystemBiological complexityPopulation Dynamics and Ecological Pattern Formation
researchProduct

Moment Equations for a Spatially Extended System of Two Competing Species

2005

The dynamics of a spatially extended system of two competing species in the presence of two noise sources is studied. A correlated dichotomous noise acts on the interaction parameter and a multiplicative white noise affects directly the dynamics of the two species. To describe the spatial distribution of the species we use a model based on Lotka-Volterra (LV) equations. By writing them in a mean field form, the corresponding moment equations for the species concentrations are obtained in Gaussian approximation. In this formalism the system dynamics is analyzed for different values of the multiplicative noise intensity. Finally by comparing these results with those obtained by direct simulat…

PhysicsFluctuation phenomena random processes noise and Brownian motionSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciStatistical Mechanics (cond-mat.stat-mech)Multiplicative white noiseFOS: Physical sciencesFluctuation phenomena random processes noise and Brownian motion; Nonlinear dynamics and nonlinear dynamical systems; Population dynamics and ecological pattern formationCondensed Matter PhysicsSpatial distributionMultiplicative noiseElectronic Optical and Magnetic MaterialsSystem dynamicsMean field theorySpatial ecologyQuantitative Biology::Populations and EvolutionStatistical physicsNonlinear dynamics and nonlinear dynamical systemCondensed Matter - Statistical MechanicsMoment equationsCoupled map latticePopulation dynamics and ecological pattern formation
researchProduct